Showing results 1 to 6 of 6 articles
Alp Dinçkoç

The Role of the Inhibitors of Transmembrane Protein TMPRRS2 in the Potential Treatment of Covid-19

Aiyegbusi OL, Hughes SE, Turner G, Rivera SC, McMullan C, Chandan JS, Haroon S, Price G, Davies EH, Nirantharakumar K, et al. 2021. Symptoms, complications and management of long COVID: a review. Journal of the Royal Society of Medicine. 114(9):014107682110328. doi:https://doi.org/10.1177/01410768211032850. Aleem A, Kothadia JP. 2021. Remdesivir. PubMed. https://www.ncbi.nlm.nih.gov/books/NBK563261/. Aoyama T, Ino Y, Ozeki M, Oda M, Sato T, Koshiyama Y, Suzuki S, Fujita M. 1984. Pharmacological Studies of FUT-175, Nafamstat Mesilate I. Inhibition of Protease Activity in in Vitro and in Vivo Experiments. 35(3):203–227. doi:https://doi.org/10.1254/jjp.35.203. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. 2020. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 9(3):186. doi:https://doi.org/10.3390/pathogens9030186. https://www.mdpi.com/2076-0817/9/3/186. Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, Cases‐Thomas M, Little P, Nielsen LP, Søgaard OS, et al. 2020. Camostat mesylate against SARS‐CoV‐2 and COVID‐19—Rationale, dosing and safety. Basic & Clinical Pharmacology & Toxicology. 128(2):204–212. doi:https://doi.org/10.1111/bcpt.13533. Cao J-F, Yang X, Xiong L, Wu M, Chen S-Y, Xiong C, He P, Zong Y, Zhang L, Fu H, et al. 2022. Mechanism of N-0385 blocking SARS-CoV-2 to treat COVID-19 based on molecular docking and molecular dynamics. 13. doi:https://doi.org/10.3389/fmicb.2022.1013911. Coote K, Atherton-Watson HC, Sugar R, Young AM, MacKenzie-Beevor A, Gosling M, Gurdip Bhalay, Graham Charles Bloomfield, Dunstan A, Bridges RS, et al. 2009. Camostat Attenuates Airway Epithelial Sodium Channel Function in Vivo through the Inhibition of a Channel-Activating Protease. Journal of Pharmacology and Experimental Therapeutics. 329(2):764–774. doi:https://doi.org/10.1124/jpet.108.148155. Fraser BJ, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y, Kwon D, Tan R, Wilson RP, Leopold K, et al. 2022. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nature Chemical Biology. 18(9):963–971. doi:https://doi.org/10.1038/s41589-022-01059-7. https://www.nature.com/articles/s41589-022-01059-7. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, et al. 2011. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. Journal of Virology. 85(9):4122–4134. doi:https://doi.org/10.1128/JVI.02232-10. https://jvi.asm.org/content/85/9/4122.short. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. 2013. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology. 88(2):1293–1307. doi:https://doi.org/10.1128/jvi.02202-13. Hirano T, Takeuchi S. 1993. A New Protease Inhibitor, Nafamostat Mesilate (FUT-175), Protects Pancreatic Acinar Cells in CDE-Diet-lnduced Pancreatitis in Mice. Digestive Surgery. 10(4):182–188. doi:https://doi.org/10.1159/000172171. Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, Søgaard OS, Hasselstrøm JB, Winkler M, Hempel T, et al. 2021. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 65. doi:https://doi.org/10.1016/j.ebiom.2021.103255. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00048-7/fulltext. Huang Y, Yang C, Xu X, Xu W, Liu S. 2020. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 41(9):1141–1149. doi:https://doi.org/10.1038/s41401-020-0485-4. https://www.nature.com/articles/s41401-020-0485-4. Jackson CB, Farzan M, Chen B, Choe H. 2021. Mechanisms of SARS-CoV-2 Entry into Cells. Nature Reviews Molecular Cell Biology. 23(1):1–18. doi:https://doi.org/10.1038/s41580-021-00418-x. Knight AC, Montgomery SA, Fletcher CA, Baxter VK. 2021. Mouse Models for the Study of SARS-CoV-2 Infection. Comparative Medicine. 71(5):1–15. doi:https://doi.org/10.30802/AALAS-CM-21-000031. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594264/. Leach DA, Mohr A, Giotis ES, Cil E, Isac AM, Yates LL, Barclay WS, Zwacka RM, Bevan CL, Brooke GN. 2021. The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nature Communications. 12:4068. doi:https://doi.org/10.1038/s41467-021-24342-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249423/. Li F, Han M, Dai P, Xu W, He J, Tao X, Wu Y, Tong X, Xia X, Guo W, et al. 2021. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications. 12(1). doi:https://doi.org/10.1038/s41467-021-21171-x. https://www.nature.com/articles/s41467-021-21171-x.pdf. Li K, Meyerholz DK, Bartlett JA, McCray PB. 2021. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio. 12(4):e0097021. doi:https://doi.org/10.1128/mBio.00970-21. https://pubmed.ncbi.nlm.nih.gov/34340553/). K Beckh, Burkhard Göke, R. Müller, Arnold R. 1987. Elimination of the low-molecular weight proteinase inhibitor camostate (FOY 305) and its degradation products by the rat liver. Research in Experimental Medicine. 187(6):401–406. doi:https://doi.org/10.1007/bf01852177. Keller C, Böttcher-Friebertshäuser E, Lohoff M. 2022. TMPRSS2, a novel host-directed drug target against SARS-CoV-2. Signal Transduction and Targeted Therapy. 7(1). doi:https://doi.org/10.1038/s41392-022-01084-x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308027/. Ko W-C, Rolain J-M, Lee N-Y, Chen P-L, Huang C-T, Lee P-I, Hsueh P-R. 2020. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. International Journal of Antimicrobial Agents. 55(4):105933. doi:https://doi.org/10.1016/j.ijantimicag.2020.105933. https://www.sciencedirect.com/science/article/pii/S0924857920300832?viaihub. Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F, Schmitzova J, Farnung L, Siewert A, Höbartner C, Cramer P. 2021. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nature Communications. 12(1). doi:https://doi.org/10.1038/s41467-020-20542-0. Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. 2022. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. Wani TA, editor. BioMed Research International. 2022:1–16. doi:https://doi.org/10.1155/2022/7341493. Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, Pozniak A, Boffito M, Waters L, Burger D, et al. 2022 May 14. Recommendations for the management of drug‐drug interactions between the COVID‐19 antiviral nirmatrelvir/ritonavir (Paxlovid ® ) and comedications. Clinical Pharmacology & Therapeutics. doi:https://doi.org/10.1002/cpt.2646. Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. 2022. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virology Journal. 19(1). doi:https://doi.org/10.1186/s12985-022-01802-5. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, et al. 2006. Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology. 81(2):813–821. doi:https://doi.org/10.1128/jvi.02012-06. Moon AM, Barritt AS. 2020 Sep 2. Elevated Liver Enzymes in Patients with COVID-19: Look, but Not Too Hard. Digestive Diseases and Sciences. doi:https://doi.org/10.1007/s10620-020-06585-9. Moreau GB, Burgess SL, Sturek JM, Donlan AN, Petri WA, Mann BJ. 2020. Evaluation of K18-hACE2 Mice as a Model of SARS-CoV-2 Infection. The American Journal of Tropical Medicine and Hygiene. 103(3):1215–1219. doi:https://doi.org/10.4269/ajtmh.20-0762. Peng R, Wu L-A, Wang Q, Qi J, Gao GF. 2021. Cell entry by SARS-CoV-2. Trends in Biochemical Sciences. 46(10):848–860. doi:https://doi.org/10.1016/j.tibs.2021.06.001. Ragia G, Manolopoulos VG. 2020 Jul 21. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. European Journal of Clinical Pharmacology. doi:https://doi.org/10.1007/s00228-020-02963-4. Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. 2021. SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Frontiers in Immunology. 12. doi:https://doi.org/10.3389/fimmu.2021.708264. Sarker J, Das P, Sarker S, Roy AK, Momen AZMR. 2021. A Review on Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike Protein Activation. Seong SY, editor. Scientifica. 2021:1–9. doi:https://doi.org/10.1155/2021/2706789. Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, et al. 2022 Mar 28. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature.:1–13. doi:https://doi.org/10.1038/s41586-022-04661-w. https://www.nature.com/articles/s41586-022-04661-w. Slovin S, Clark W, Carles J, Krivoshik A, Park JW, Wang F, George D. 2018. Seizure Rates in Enzalutamide-Treated Men With Metastatic Castration-Resistant Prostate Cancer and Risk of Seizure: The UPWARD Study. JAMA oncology. 4(5):702–706. doi:https://doi.org/10.1001/jamaoncol.2017.3361. https://pubmed.ncbi.nlm.nih.gov/29222530/. Sonawane KD, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble SA, Mohammed AA, Makandar AM, Fandilolu PM, Dound AS, et al. 2021. Structural insights and inhibition mechanism of TMPRSS2 by experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-coronavirus-2: A molecular modeling approach. Informatics in Medicine Unlocked. 24:100597. doi:https://doi.org/10.1016/j.imu.2021.100597. Stevaert A, Van Berwaer R, Mestdagh C, Vandeput J, Vanstreels E, Raeymaekers V, Laporte M, Naesens L. 2022. Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease. mBio. 13(4):e0137622. doi:https://doi.org/10.1128/mbio.01376-22. https://pubmed.ncbi.nlm.nih.gov/35913162/. Su SB, Motoo Y, Iovanna JL, Xie MJ, Sawabu N. 2001. Effect of camostat mesilate on the expression of pancreatitis-associated protein (PAP), p8, and cytokines in rat spontaneous chronic pancreatitis. Pancreas. 23(2):134–140. doi:https://doi.org/10.1097/00006676-200108000-00003. https://pubmed.ncbi.nlm.nih.gov/11484915/. TMPRSS2 transmembrane serine protease 2 [Homo sapiens (human)] – Gene – NCBI. wwwncbinlmnihgov. https://www.ncbi.nlm.nih.gov/gene/7113. Wettstein L, Kirchhoff F, Münch J. 2022. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. International Journal of Molecular Sciences. 23(3):1351. doi:https://doi.org/10.3390/ijms23031351. Wu N, Joyal-Desmarais K, Ribeiro PAB, Vieira AM, Stojanovic J, Sanuade C, Yip D, Bacon SL. 2023. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. The Lancet Respiratory Medicine. 0(0). doi:https://doi.org/10.1016/S2213-2600(23)00015-2. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(23)00015-2/fulltext#:~:text=Vaccineeffectivenessatbaselinewas. Yamaya M, Shimotai Y. 2016. Serine Proteases and their Inhibitors in Human Airway Epithelial Cells: Effects on Influenza Virus Replication and Airway Serine Proteases and their Inhibitors in Human Airway Epithelial Cells: Effects on Influenza Virus Replication and Airway Inflammation. Clinical Microbiology. 05(02). doi:https://doi.org/10.4172/2327-5073.1000238. Yinda CK, Port JR, Bushmaker T, Offei Owusu I, Purushotham JN, Avanzato VA, Fischer RJ, Schulz JE, Holbrook MG, Hebner MJ, et al. 2021. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. Subbarao K, editor. PLOS Pathogens. 17(1):e1009195. doi:https://doi.org/10.1371/journal.ppat.1009195. Yuan L, Li M, Zhang Z, Li W, Jin W, Wang M. 2021. Camostat mesilate inhibits pro-inflammatory cytokine secretion and improves cell viability by regulating MFGE8 and HMGN1 in lipopolysaccharide-stimulated DF-1 chicken embryo fibroblasts. PeerJ. 9:e12053. doi:https://doi.org/10.7717/peerj.12053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403478/. Zheng J, Wong L-YR, Li K, Verma AK, Ortiz M, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray PB, et al. 2020 Nov 9. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature.:1–8. doi:https://doi.org/10.1038/s41586-020-2943-z. https://www.nature.com/articles/s41586-020-2943-z. Hu, Xin, et al. “Discovery of TMPRSS2 Inhibitors from Virtual Screening.” BioRxiv, 17 Mar. 2021, p. 2020.12.28.424413, www.ncbi.nlm.nih.gov/pmc/articles/PMC7781311/, https://doi.org/10.1101/2020.12.28.424413. Mantzourani, Christiana, et al. “The Discovery and Development of Transmembrane Serine Protease 2 (TMPRSS2) Inhibitors as Candidate Drugs for the Treatment of COVID-19.” Expert Opinion on Drug Discovery, vol. 17, no. 3, 24 Jan. 2022, pp. 231–246, https://doi.org/10.1080/17460441.2022.2029843. Accessed 11 Mar. 2022. Maggio, Roberto, and Giovanni U. Corsini. “Repurposing the Mucolytic Cough Suppressant and TMPRSS2 Protease Inhibitor Bromhexine for the Prevention and Management of SARS-CoV-2 Infection.” Pharmacological Research, vol. 157, July 2020, p. 104837, https://doi.org/10.1016/j.phrs.2020.104837. Accessed 14 May 2020. Mikhaylov, Evgeny N, et al. “Bromhexine Hydrochloride Prophylaxis of COVID-19 for Medical Personnel: A Randomized Open-Label Study.” Interdisciplinary Perspectives on Infectious Diseases, vol. 2022, 29 Jan. 2022, pp. 1–7, www.ncbi.nlm.nih.gov/pmc/articles/PMC8799951/, https://doi.org/10.1155/2022/4693121. Accessed 6 Dec. 2023. Sun, Young Joo, et al. “Structure-Based Phylogeny Identifies Avoralstat as a TMPRSS2 Inhibitor That Prevents SARS-CoV-2 Infection in Mice.” Journal of Clinical Investigation, vol. 131, no. 10, 17 May 2021, https://doi.org/10.1172/jci147973. Accessed 21 June 2021. Bojkova, Denisa, et al. “Aprotinin Inhibits SARS-CoV-2 Replication.” Cells, vol. 9, no. 11, 30 Oct. 2020, p. 2377, https://doi.org/10.3390/cells9112377. Accessed 6 Dec. 2021. Ramakrishnan, Jaganathan, et al. “Strong Binding of Leupeptin with TMPRSS2 Protease May Be an Alternative to Camostat and Nafamostat for SARS-CoV-2 Repurposed Drug: Evaluation from Molecular Docking and Molecular Dynamics Simulations.” Applied Biochemistry and Biotechnology, vol. 193, no. 6, 29 Jan. 2021, pp. 1909–1923, https://doi.org/10.1007/s12010-020-03475-8. Accessed 4 Feb. 2022. Shirogane, Yuta, et al. “Efficient Multiplication of Human Metapneumovirus in Vero Cells Expressing the Transmembrane Serine Protease TMPRSS2.” Journal of Virology, vol. 82, no. 17, Sept. 2008, pp. 8942–8946, https://doi.org/10.1128/jvi.00676-08. Accessed 2 Dec. 2021. Sasaki, Michihito, et al. “Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group a Rotaviruses.” Journal of Virology, vol. 95, no. 11, 10 May 2021, pp. e00398-21, JVI.00398-21, pubmed.ncbi.nlm.nih.gov/33762412/, https://doi.org/10.1128/JVI.00398-21. Accessed 6 Dec. 2023. Bertram, S., et al. “TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium.” Journal of Virology, vol. 87, no. 11, 27 Mar. 2013, pp. 6150–6160, https://doi.org/10.1128/jvi.03372-12. Accessed 9 June 2020. Abe, Masako, et al. “TMPRSS2 Is an Activating Protease for Respiratory Parainfluenza Viruses.” Journal of Virology, vol. 87, no. 21, 1 Nov. 2013, pp. 11930–11935, www.ncbi.nlm.nih.gov/pmc/articles/PMC3807344/, https://doi.org/10.1128/jvi.01490-13. Accessed 6 Dec. 2023. Limburg, Hannah, et al. “TMPRSS2 Is the Major Activating Protease of Influenza a Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes.” Journal of Virology, vol. 93, no. 21, Nov. 2019, https://doi.org/10.1128/jvi.00649-19.

Hatice KÜPELİ

ÇOCUKLARDA SAĞLIK DURUM KONTROLÜ İLE UYGUN SAĞLIK HİZMETİNE YÖNLENDİRME UYGULAMASI

1. Yaylacı,S., Cimilli,T. Ve Yılmazer,S.Ç.2013. “Acil Servise Ambulansla Başvuran Hastaların Aciliyetinin Retrospektif Değerlendirilmesi ”, Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, Cilt 4 , Sayı 2,s.64-67 2. Kılıçaslan,İ., Bozan, H., Oktay,C., ve Göksu, E.2005. “Türkiye’de Acil Servise Başvuran Hastaların Demografik Özellikleri”, Türkiye Acil Tıp Dergisi, Cilt 5,Sayı 1,s.5-13 3. Edirne,T., Atmaca,B. ve Keskin,S.2008. “Yüzüncü Yıl Üniversitesi Tıp Fakültesi Acil Servis Hastalarının Özellikleri”, Van Tıp Dergisi, Cilt 15,Sayı 4, s.107-111 4. Köse,A., Köse,B., Öncü,M.R. ve Tuğrul,F.2011. “Bir devlet hastanesi acil servisine başvuran hastaların profili ve başvurunun uygunluğu”, Gaziantep Tıp Dergisi, Cilt 17,Sayı 2,s.57-62 5. Aydın,T., Aydın,Ş.A., Köksal,Ö., Özdemir,F., Kulaç,S. ve Bulut,M.2010. “Uludağ Üniversitesi Tıp Fakültesi Hastanesi Acil Servisine başvuran hastaların özelliklerinin ve acil servis çalışmalarının değerlendirilmesi”,Akademik Acil Tıp Dergisi, Cilt 9, Sayı 4, s. 163-168 6. Atabek,M.E., Oran,B., Çoban,H. ve Erkul,İ.1999. “Çocuk acile başvuran hastaların özellikleri”, S.Ü.Tıp Fakültesi Dergisi, Cilt 15, Sayı 1, s.89-92 7. App İnventor , https://gelecegiyazanlar.turkcell.com.tr/konu/app-inventor (Erişim Tarihi :22.07.2020) 8. Blender, img.eba.gov.tr › bbd › name=Blender 3d Giriş (Erişim Tarihi :12.08.2020) 9. App İnventor, https://en.wikipedia.org/wiki/App_Inventor_for_Android (Erişim Tarihi:22.08.2020) 10. Erol,A., Akarca,F., Değerli,V., Sert,E., Delibaş,H., Gülpek,D. ve Mete,L.2012. “Acil Servis Çalışanlarında Tükenmişlik ve İş Doyumu” , Klinik Psikiyatri, Cilt 1,Sayı 15, s.103-110 11. Civaner,M.1999. “Bir devlet hastanesinin acil servisine başvuran hastaların analizi. Sağlık ve Toplum”, Sağlık ve Toplum Dergisi, Cilt 9, Sayı 1,s.3-7

ibrahim Kuru

YAPAY SİNİR AĞLARI İLE SES VERİLERİNDEN DUYGU DURUM ANALİZİ

Vos, T., Barber, R. M., Bell, B., Bertozzi-Villa, A., Biryukov, S., … Brugha, T. S. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386(9995), 743-800. Psikiyatri Nedir. Erişim Tarihi: 10.10.1022. https://psikiyatri.org.tr/halka-yonelik/5/psikiyatri-nedir Chesney, E., Goodwin, G. M. ve Fazel, S. (2014). Risks of all‐cause and suicide mortality in mental disorders: A meta‐review. World Psychiatry, 13(2), 153-160. Vigo, D., Thornicroft, G. ve Atun, R. (2016). Estimating the true global burden of mental illness. The Lancet Psychiatry, 3(2), 171-178. Bloom, B., Cohen, R. A. ve Freeman, G. (2011). Summary health statistics for US children; National health interview survey, 2010. Vital and Health Statistics, 250, 1-80. KARABIYIK, M. S., & KARAŞİN, Y. (2022). Covid-19 Pandemisinde Sağlık Ve Toplum Krizle Mücadele Ve Değişim. Efe Akademi Yayınları. Emiral, E., Çevik, Z.A. ve Gülümser, Ş. (2020). Covıd-19 Pandemisi ve İntihar, ESTÜDAM Halk Sağlığı Dergisi, 5, 138-47. Sher, L. (2020). The impact of the COVID-19 pandemic on suicide rates. QJM: An International Journal of Medicine, 113(10), 707-712. Kraepelin, E. (1921). Manic-depressive insanity and paranoia. E. & S. Livingstone. Alpert, M. (1982). Encoding of feelings in voice. In P. J. Clayton ve J. E. Barrett (Eds.), Treatment of depression: Old controversies and new approaches (pp. 217-228). Raven Press. Sataloff R.T. (2005), Treatment of Voice Disorders, Plural Publishing, San Diego. Siegman, A. W. (1985). Expressive correlates of affective states and traits. Multichannel Integrations of Nonverbal Behavior, 37-68. Aronson, H. ve Weintraub, W. (1972). Personal adaptation as reflected in verbal behavior. In A. W. Siegman ve H. Pope (Eds.), Studies in dyadic communication (pp. 265-279). Pergamon. Kanfer, F. H. (1960). Verbal rate, eyeblink, and content in structured psychiatric interviews. The Journal of Abnormal and Social Psychology, 61(3), 341. Pope, B., Blass, T., Siegman, A. W. ve Raher, J. (1970). Anxiety and depression in speech. Journal of Consulting and Clinical Psychology, 35(1p1), 128. Siegman, A. W. (1987). The pacing of speech in depression. Depression and Expressive Behavior, 83- 102. Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J. ve Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10-49. Yamamoto, M., Takamiya, A., Sawada, K., Yoshimura, M., Kitazawa, M., … Kishimoto, T. (2020). Using speech recognition technology to investigate the association between timing-related speech features and depression severity. PloS One, 15(9), e0238726. Mundt, J. C., Vogel, A. P., Feltner, D. E. ve Lenderking, W. R. (2012). Vocal acoustic biomarkers of depression severity and treatment response. Biological Psychiatry, 72(7), 580-587. Frye, M. A., Helleman, G., McElroy, S. L., Altshuler, L. L., Black, D. O., … Suppes, T. (2009). Correlates of treatment-emergent mania associated with antidepressant treatment in bipolar depression. American Journal of Psychiatry, 166(2), 164-172. Vanello, N., Guidi, A., Gentili, C., Werner, S., Bertschy, G., … Scilingo, E. P. (2012, September). Speech analysis for mood state characterization in bipolar patients. In 2012 annual international conference of the IEEE Engineering in Medicine and Biology Society (pp. 2104-2107). IEEE. Maxhuni, A., Muñoz-Meléndez, A., Osmani, V., Perez, H., Mayora, O. ve Morales, E. F. (2016). Classification of bipolar disorder episodes based on analysis of voice and motor activity of patients. Pervasive and Mobile Computing, 31, 50-66. Murray, I. R. ve Arnott, J. L. (1993). Toward the simulation of emotion in synthetic speech: A review of the literature on human vocal emotion. The Journal of the Acoustical Society of America, 93(2), 1097-1108. Özseven, T., Düğenci, M., Doruk, A. ve Kahraman, H. I. (2018). Voice traces of anxiety: Acoustic parameters affected by anxiety disorder. Archives of Acoustics, 625-636. Silber-Varod, V., Gósy, M. ve Eklund, R. (2019). Segment prolongation in Hebrew. In The 9th Workshop on Disfluency in Spontaneous Speech (p. 47). Scherer, S., Stratou, G., Mahmoud, M., Boberg, J., Gratch, J., … Morency, L. P. (2013, April). Automatic behavior descriptors for psychological disorder analysis. In 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) (pp. 1-8). IEEE. Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J. ve Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10-49. Marmar, C. R., Brown, A. D., Qian, M., Laska, E., Siegel, C., … Vergyri, D. (2019). Speech‐based markers for posttraumatic stress disorder in US veterans. Depression and Anxiety, 36(7), 607-616. Raspberry Pi Nedir, https://maker.robotistan.com/raspberry-pi-dersleri-0-raspberry-piyi-taniyalim/#:~:text=RaspberryPiZeroW(20152017)&text=EnkkboyutluRaspberryPi,ZeroWmodelipiyasasrld (Erişim Tarihi:11.09.2022)

Hatice KÜPELİ

OTONOM MEME KANSERİ TARAMA SİSTEMİ GELİŞTİRİLMESİ

• Başak, Ş. C. (2015). Üniversite öğrencilerinde meme kanseri bilgi seviyesi: Geniş Kapsamlı Meme Kanseri Bilgi Testinin geçerlik ve güvenirlik çalışması (Master's thesis, Sosyal Bilimler Enstitüsü). • MERMER, G., & GÜZEKİN, Ö. (2021). Kadinlarda Meme Kanseri Risk Düzeyi Ve Tarama Yöntemlerini Kullanma Durumu. Van Sağlık Bilimleri Dergisi, 14(1), 50-62. • Turan, Z., & Yiğit, F. (2021). Kadınların meme kanseri önleme davranışlarını etkileyen faktörleri belirleme ölçeği’nin geçerlik ve güvenirlik çalışması. Kocaeli Tıp Dergisi, 10(3), 407-420. • Uçar, Ö. (2021). Aile hekimliği polikliniğine başvuran 20 yaş ve üzeri kadınlarda meme kanseri farkındalığının değerlendirilmesi. • SERT, P. İ., & KÜÇÜKKILINÇ, Z. T. T. Meme Kanseri Tedavisindeki Güncel Yaklaşımlar. Hacettepe University Journal of the Faculty of Pharmacy, 42(1), 46-59. • BULUT, İ., OĞUZÖNCÜL, A. F., & KARA, K. T. (2021). KANSER ERKEN TEŞHİS, TARAMA VE EĞİTİM MERKEZİ’NE AİT MEME VE SERVİKS KANSERLERİNİ TARAMA PROGRAMI SONUÇLARI. ESTÜDAM Halk Sağlığı Dergisi, 6(2), 182-190. • ASLANER, Ç., & ÖNAL, A. E. Bir Aile Sağlığı Merkezine Başvuran Kadınların Meme Kanserinden Korunma. • Türközen, A. (2018). Tıp Fakültesi öğrencilerinin meme maketi ve standart hasta uygulamaları ile meme muayenesi becerilerinin geliştirilmesi. • Akyolcu, N., & Uğraş, G. A. (2011). KENDİ KENDİNE MEME MUAYENESİ: ERKEN TANIDA NE KADAR ÖNEMLİ?. Meme Sagligi Dergisi/Journal of Breast Health, 7(1). • Chen, M. Y., & Gillanders, W. E. (2021). Staging of the axilla in breast cancer and the evolving role of axillary ultrasound. Breast Cancer: Targets and Therapy, 311-323. • Meme Kanseri, https://www.acibadem.com.tr/ilgi-alani/meme-kanseri/,( Erişim Tarihi:11.09.2022) • Sağlık İstatistikleri Yıllığı 2020, https://dosyasb.saglik.gov.tr/Eklenti/43399,siy2020-tur-26052022pdf.pdf?0 , (Erişim Tarihi:13.08.2022) • Meme kanseri risk faktörleri, https://www.memekanseri.org.tr/meme-sagligi/meme-kanseri-risk-faktorleri/( Erişim Tarihi:21.09.2022) • Breast Cancer, https://www.who.int/news-room/fact-sheets/detail/breast-cancer, ( Erişim Tarihi:25.07.2022) • Birhane, K., Alemayehu, M., Anawte, B., Gebremariyam, G., Daniel, R., Addis, S., … & Negash, W. (2017). Practices of breast self- examination and associated factors among female debre berhan university students. International journal of Breast Cancer, 2017(1), 1-6 doi: https://doi.org/10.1155/2017/8026297 • Meme kanseri korunma, tarama, tanı, tedavi ve izlem klinik rehberi 2020, http://www.tmhdf.org.tr/Uploads/Editor/tc_sb_meme_kanseri_klinik_rehber.pdf( Erişim Tarihi:18.08.2022) • Autodesk Fusion 360, https://www.autodesk.com.tr/products/fusion-360/overview?term=1-YEAR HYPERLINK "https://www.autodesk.com.tr/products/fusion-360/overview?term=1-YEAR&tab=subscription"& HYPERLINK "https://www.autodesk.com.tr/products/fusion-360/overview?term=1-YEAR&tab=subscription"tab=subscription, ( Erişim Tarihi:26.10.2022) • SÜZEN, A. A., CEYLAN, O., ÇETİN, A., & ULUSOY, A. (2017). Arduino Kontrollü Çizim Robotu. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(Özel (Special) 1), 79-87. • Abolfotouh, M. A., Ala’a, A. B., Mahfouz, A. A., Al-Assiri, M. H., Al- Juhani, A. F., & Alaskar, A. S. (2015). Using the health belief model to predict breast self examination among Saudi women. BMC Public Health, 15(1), 1-12. • Basınç sensörü nedir, https://www.sensortek-hbm.com/basinc-sensoru-nedir/ ( Erişim Tarihi:9.10.2022) • Step Motor, http://www.inverter-plc.net/servo_sistem/step_motorlar.html ( Erişim Tarihi:7.10.2022) • YILDIRIM, K., & KEŞAN, C. (2022). Matematik Öğrenme Sürecinde Üç Boyutlu Yazıcı Kullanımına İlişkin Öğrenci Görüşlerinin İncelenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (53), 558-586. • App inventor nedir, https://www.artistanbul.io/blog/2016/09/29/app-inventor-nedir-nicin-onemlidir/ ( Erişim Tarihi:14.10.2022)

Nursema Solak

CRISPR/CAS9’UN ANALİZİ VE NANOTEKNOLOJİK İLAÇ TAŞINIMI

(1) Gök, Z. G., and B. Ç. Tunalı. "CRISPR/Cas İmmün Sisteminin Biyolojisi, Mekanizması ve Kullanım Alanları. Kırıkkale Üniversitesi Mühendislik Fakültesi Biyomühendislik Bölümü, Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi." International Journal of Research and Development 8.2 (2016). (CRISPR/Cas İmmün Sisteminin Biyolojisi, Mekanizması ve Kullanım Alanları) (2) TUFAN, Feyza. "Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları." Haliç Üniversitesi Fen Bilimleri Dergisi 2.1: 113-133. (Genom Düzenleme Teknolojileri ve Bitkilerdeki Uygulamaları Genome Editing Technologies and its Applications in Plants) (3) TOPÇU, İbrahim. "Gen Düzenleme Teknolojileri Tarihi." ((PDF) Gen Düzenleme Teknolojileri Tarihi) (4) Wilkinson, Royce ve Blake Wiedenheft. "Genom mühendisliği için bir CRISPR yöntemi." F1000prime raporları cilt. 6 3. 2 Ocak 2014, doi:10.12703/P6-3 (A CRISPR method for genome engineering) (5) Duan, Li et al. “Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing.” Frontiers in genetics vol. 12 673286. 12 May. 2021, doi:10.3389/fgene.2021.673286 (Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing – PMC) (6) Xu, Xiaoyu, et al. "Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment." Advanced Drug Delivery Reviews 176 (2021): 113891. (Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment) (7) Evrim Ağacı, “CRISPR Gen Düzenleme Yöntemi Nedir? CRISPR-Cas9 Sistemini Kullanarak Genleri Nasıl Düzenleriz?”, erişim: 19 Nisan 2022, https://doi.org/10.47023/ea.bilim.407

Güşa Ebrar Bulut

İŞİTME CİHAZLARINDA BULUNAN PROBLARDA BİRİKEN MİKRO-ATIK MİKTARININ AZALTILMASI

Feynman RP. There’s Plenty of Room at the Bottom. Eng Sci. 1960;23:22-36 KUT, D., GÜNEŞOĞLU, C. 2005. Nanoteknoloji ve tekstil sektöründeki Uygulamaları. Tekstil&Teknik. Şubat:224-230 ÖZDOĞAN, E., DEMİR, A., SEVENTEKİN, N. 2006a. Nanoteknoloji ve tekstil Uygulamaları. Tekstil ve Konfeksiyon. 16(3):159-163.______. 2006b. Nanoteknoloji ve tekstil uygulamaları (bölüm 2). Tekstil ve Konfeksiyon. 16(4):225-229. Taniguchi N. On the Basic Concept of ‘NanoTechnology’. Proc Intl Conf Prod Eng Tokyo Part II, Tokyo: Japan Soci?ety of Precision Engineering; 1974. Westen D, Bontoux T. The London Centre for Nanotechnology. Nanom?edicine. 2009;4(8):869-73

en_USEN