Showing results 1 to 10 of 45 articles
Alp Giray Datlar

GLUTAMİK ASİTİN TUZ STRESİNDE BİBER BİTKİSİNİN ÇİMLENMESİ VE VEJETATİF BÜYÜMESİNDE ETKİSİ – EFFECT OF GLUTAMIC ACID ON GERMINATION AND VEGETATIVE GROWTH OF PEPPER PLANT UNDER SALT STRESS

Yakupoğlu, G. (2020). Biberde Tuz Stresine Karşı Melatonin Uygulamasının Bazı Fide Özellikleri Üzerine Etkisi . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi , 36 (1) , 76-81 .   [1] Ashraf, M., Foolad., M.R., 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environmental Experimental Botany, 59 (2007), 206–216. [2] Yılmaz, E., Tuna, A. L., Bürün, B., 2011. Bitkilerin Tuz Stresi Etkilerine Karşı Geliştirdikleri Tolerans Stratejileri. C.B.Ü. Fen Bilimleri Dergisi ISSN 1305-1385 C.B.U. Journal of Science. 47–66 7.1 (2011), 47–66. Aydın, İ. (2015). Tuz Stresinin Bazı Kültür Bitkilerinde Çimlenme ve Fide Gelişimi Üzerine Etkileri . Muş Alparslan Üniversitesi Fen Bilimleri Dergisi , 3 (2) , 0-0 Çulha, Ş. & Çakırlar, H. (2011). Tuzluluğun Bitkilerin Üzerine Etkileri ve Tuz Tolerans Mekanizmaları . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 11 (2), 11-34. 

Deniz Can

GLUTAMİK ASİTİN TUZ STRESİNDE DOMATES BİTKİSİNİN ÇİMLENMESİ VE VEJETATİF BÜYÜMESİNDE ETKİSİ

•Aydın, İ. (2015). Tuz Stresinin Bazı Kültür Bitkilerinde Çimlenme ve Fide Gelişimi Üzerine Etkileri . Muş Alparslan Üniversitesi Fen Bilimleri Dergisi , 3 (2) , 0-0 . •SEKMEN, A. H., DEMİRAL, T., TOSUN, N., TÜRKÜSAY, H., & TÜRKAN, İ. (2005). Tuz stresi uygulanan domates bitkilerinin bazı fizyolojik özellikleri ve toplam protein miktarı üzerine bitki aktivatörünün etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 42(1), 85-95. YAŞAR, F., & YAŞAR, Özlem . (2022). Growth Performance of Charleston and Hot Pepper Varieties Under Salt Stress. ISPEC Journal of Agricultural Sciences, 6(4), 835–841. •Dere, S. (2021). Kuraklık Stresi Koşullarında Bakteri Uygulamasının Domates Bitkileri Üzerine Etkileri . Türk Doğa ve Fen Dergisi , 10 (1) , 52-62 . DOI: 10.46810/tdfd.805789 •Kıran, S. , Özkay, F. , Kuşvuran, Ş. & Ellialtıoğlu, Ş. Ş. (2014). Tuz Stresine Tolerans Seviyesi Farklı Domates Genotiplerinin Kuraklık Stresi Koşullarında Bazı Özelliklerinde Meydana Gelen Değişimler . Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG) , 31 (3) , 41-48 . Çulha, Ş. & Çakırlar, H. (2011). Tuzluluğun Bitkilerin Üzerine Etkileri ve Tuz Tolerans Mekanizmaları . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 11 (2), 11-34.

ahu deniz uludağ

MANGALA ZEKÂ OYUNU İLE KAZANILAN DEĞERLER ÜZERİNE BİR İNCELEME

YALÇINKAYA, T., & YALÇINKAYA, A. E. A. (2016). Küreselleşme Sürecinde Akıl Oyunları. Journal of International Social Research, 9(43). Sadıkoğlu, A. (2017). Zekâ ve akıl oyunları dersinin değerler eğitimindeki rolünün öğretmen görüşlerine göre değerlendirilmesi (Master's thesis, İstanbul Sabahattin Zaim Üniversitesi, Sosyal Bilimler Enstitüsü, Eğitim Bilimleri Anabilim Dalı). Ulusoy, K., & Dilmaç, B. (2012). Değerler eğitimi. Ankara: Pegem Akademi.

Yağmur Z. Öztemel

ÜLKEMİZİN GELECEĞİ OLAN LİSE ÖĞRENCİLERİNE NÜKLEER ENERJİNİN TANITILMASI

(2018, Eylül 7). nükleer akademi: http://nukleerakademi.org/bir-ampulu-1-yil-yakmak-icin-gerekli-enerji/ adresinden alındı (2020). Enerji Atlası : https://www.enerjiatlasi.com/rezerv/dunya-petrol-rezervi.html#:~:text=Son5yllktketimleregre,35milyar405milyonvarildir. adresinden alındı Ateş, H., & Saraçoğlu, M. (2013). Fen Bilgisi Öğretmen Adaylarının Gözünden Nükleer Enerji. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 175-193. Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2021). Eğitimde Bilimsel Araştırma Yöntemleri (30 b.). Ankara, Kızılay: Pegem Akadeni. Clean Air Task Force. (2001). Computer Algebra and Particle Physics. (2010). Computer Algebra and Particle Physics(CAPP). (2011). Çoban, O., & Kılınç, N. (2016, Ocak). Enerji Kullanımının Çevresel Etkilerinin İncelenmesi. Demircioğlu, T., & Uçar, S. (2014). Akkuyu Nükleer Santrali Konusunda Üretilen Yazılı Argümanların İncelenmesi. İlköğretim Online, 1373-1386. Energy Department of USA. (2021). Energy Department of USA. adresinden alındı Enerji ve Politika: Ülkelerin Nükleer Santral Sayıları . (2022, Eylül 6). Türkiye Raporu: https://turkiyeraporu.com/arastirma/enerji-ve-politika-ulkelerin-nukleer-santral-sayilari-10483/ adresinden alındı Enerji ve Tabii Kaynalar Bakanlığı. (2022). Enerji ve Tabii Kaynalar Bakanlığı. adresinden alındı Engin, N. (2013). Nükleer Enerji Gelecekteki Enerji İhtiyacına Çözüm Olabilir Mi? Marmara Coğrafya Dergisi. Ertürk, F. (2012). Nükleer Enerji ve Çevre. Eş, H., Mercan, S. I., & Ayas, C. (2016). Türkiye için yeni bir sosyo-bilimsel tartışma: Nükleer ile yaşam. s. 47-59. Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to Design and Evaluate Research in Education (Cilt 8). New York: McGraw-Hill International Edition. Eylül 20, 2022 tarihinde https://saochhengpheng.files.wordpress.com/2017/03/jack_fraenkel_norman_wallen_helen_hyun-how_to_design_and_evaluate_research_in_education_8th_edition_-mcgraw-hill_humanities_social_sciences_languages2011.pdf adresinden alındı Furuncu, Y. (2016, Kasım 18). Türkiye’nin Enerji Bağımlılığı ve Akkuyu Nükleer Enerji Santralı. Cumhuriyet Üniversitesi Fen Fakültesi Bilimleri Dergisi. Güneşli, H. Ö. (2019). Nükleer Santralin Türkiye Ekonomisi Açısından Fayda Ve Maliyetleri. Gürsan, Ü. T. (2020). Fen Ögretmen Adaylarının Belirsizlige Tahammülsüzlükleri, Nükleer Santraller İle İlgili Risk Ve Fayda Belirsizlik Algıları Ve Nükleer Santrallerden Elektrik Üretimi Konusunda Ögretim Öz Yeterlilikleri. Hidroelektrik santrali. (2022, Kasım 22). Vikipedia: https://tr.wikipedia.org/wiki/Hidroelektrik_santrali adresinden alındı Intergovernmental Panel on Climate Change (IPCC). (2010). Kaya, M. (2007). Türkiye'de Nükleer Santral Kurulumu. Kolstø, S. D. (2007). Patterns in Students’ Argumentation Confronted with a Risk‐focused Socio‐scientific Issue. International Journal of Science Education, 1689-1716. Muradov, E. (2012, Temmuz). Almanya'nın Nükleer Enerji Politikasını Etkileyen Faktörler. Nükleer & Yenilenebilir. (2022, Aralık). Nükleer Akademi: http://nukleerakademi.org/nukleer-enerji/yenilenebilir-enerji-kaynaklari/ adresinden alındı Nükleer Fisyon. (2022, Eylül 2). Vikipedi: https://tr.wikipedia.org/wiki/Nkleer_fisyon adresinden alındı Özalp, M. (2017). Türkiye’de Nükleer Enerji Kurulumunun Enerjide Dışa Bağımlılık Ve Arz Güvenliğine Etkisi. C.Ü. İktisadi ve İdari Bilimler Dergisi. Özdemir, N. (2014). Sosyo Bilimsel Esaslar Çerçevesinde Sosyo Bilimsel Konuları TartışmakTutumları Nasıl Etkiler? T.C. Enerji ve Tabii Kaynaklar Bakanlığı. (2022). Tüekiye İçin Nükleer Santral Neden Gereklidir? T.C. Enerji ve Tabii Kaynaklar Bakanlığı. TC Enerji ve Tabii Kaynaklar Bakanlığı. (2022). Elektrik. enerji gov.tr: https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik adresinden alındı TC Enerji ve Tabii Kaynaklar Bakanlığı. (2022). Nükleer Bilgilendirme Kitapçığı. https://enerji.gov.tr//Media/Dizin/NUPGM/tr/Belgeler/5161-nukleer3.pdf adresinden alındı TC Enerji ve Tabii Kaynaklar Bakanlığı. (tarih yok). Nükleer Enerji. T.C. Enerji ve Tabii Kaynaklar Bakanlığı. adresinden alındı TDK. (2022). TDK. adresinden alındı Temurçin, K., & Aliağaoğlu, A. (2003). Nükleer Enerji ve Tartışmalar Işığında Türkiye’de Nükleer Enerji Gerçeği. Coğrafi Bilimler Dergisi. TMMOB. (2011). Nükleer Enerji Raporu. Ankara: Fizik Mühendisleri Odası. Topçu, M. S. (2021). Sosyobilimsel Konular ve Öğretimi. Pegem Akademi. Ülkelere Göre Nükleer Enerji. (2020). Enerji Atlası: https://www.enerjiatlasi.com/ulkelere-gore-nukleer-enerji.html adresinden alındı Vikipedi. (2022, Kasım 1). Nükleer fizik. Vikipedi: https://tr.wikipedia.org/wiki/Nkleer_fizik adresinden alındı Yeraltında Daha Ne Kadar Fosil Yakıtı Var? (2019). iklimBU. adresinden alındı Köksal, B., & Civan, A. (2010). Nükleer Enerji Sahibi Olma Kararını Etkileyen Faktörler ve Türkiye için Tahminler. Uluslar Arası İlişkiler Akademik Dergi, 117-140. Vikipedi. (2022, Kasım 18). Türkiye Atom Enerjisi Kurumu. Vikipedi: https://tr.wikipedia.org/wiki/Trkiye_Atom_Enerjisi_Kurumu adresinden alındı

Hilal Demirkan

Manyetik Nanopartiküller ile Desteklenen Organik Atıkların Radyasyonu Absorplayıcı Olarak Değerlendirilmesi

Akbunar, Ş. (2008). Farklı Manyetik Özelliklere Sahip Malzemelerin Radyasyon Soğurma Özelliklerinin Araştırılması (Yüksek Lisans Tezi). Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=1nuA1T5Byz2fih9izA7Xxwveno adresinden alındı Altaf, S., Zafar, R., Zaman, W. Q., Ahmad, S., Yaqoob, K., Syed, A., . . . Arshad, M. (2021). Removal of levofloxacin from aqueous solution by green synthesized magnetite (Fe3O4) nanoparticles using Moringa olifera: Kinetics and reaction mechanism analysis. Ecotoxicology and Environmental Safety Volume 226. https://pubmed.ncbi.nlm.nih.gov/34592521/ adresinden alındı Binici, H., Temiz, H., Seviç, A. H., Eken, M., Küçükdöner, A., ve Ergül, T. (2013). Atık Pil Kömürü Ve Yumurta Kabuğunun Radyasyon Tutucu Materyal Olarak Üretimde Kullanılması. KSU Mühendislik Bilimleri Dergisi, 8-14. http://jes.ksu.edu.tr/en/download/article-file/180987 adresinden alındı Büyük, B. (2013). Tungsten, Titanyum, Bor İçeren Bazı Malzemelerin Gama Ve Nötron Radyasyonu Karşısındaki Davranışının İncelenmesi, Xcom Bilgisayar Programı İle İrdelenmesi Ve Yeni Bir Radyasyon Zırh Malzeme Önerisi (Doktora Tezi). İstanbul: İstanbul Teknik Üniversitesi-Enerji Ensititüsü. https://polen.itu.edu.tr/bitstream/11527/12905/1/301052003.pdf adresinden alındı Çetin, H. (2011). Tıbbi Amaçlı X Işını Uygulamalarında Radyasyondan Korunmak Amacıyla Kullanılan Kurşun Önlük Malzelemlerine Alternatif Olarak Üretilen Kurşunsuz Örneklerin Soğurma Özelliklerinin İncelenmesi (Yüksek Lisans Tezi). İzmir: Dokuz Eylül Üniversitesi Sağlık Bilimleri Enstitüsü. http://hdl.handle.net/20.500.12397/9974 adresinden alındı Jasmine, J. N., Ramzun, M. R., Zahirah, N. A., R, A. A., Al-M Hana, M., Zakiah, Y. N., ve Yasmin, M. R. (2020). Study of radiation attenuation ability of clay and cement mixture with added eggshell. Journal of Physics Conference Series 1497 (1), 1-4. https://www.researchgate.net/publication/340974399 adresinden alındı Kılıçarslan, Ş., ve Seven, A. (2014). Baritli Hazır Sıva Kaplamalarının Radyasyon Zırh Malzemesi Olarak Kullanımının Araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9-14. https://dergipark.org.tr/en/download/article-file/193980 adresinden alındı Kuş, K. (t.y.). Radyasyon Nedir? Bilkent Üniversitesi Sağlık Merkezi: http://bilheal.bilkent.edu.tr/aykonu/ay2011/radyasyonturk.htm adresinden alındı Türkkan, A., ve Pala, K. (2009). Çok Düşük Frekanslı Elektromanyetik Radyasyon Ve Sağlık Etkileri. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi Cilt 14, Sayı 2, 11-22. https://dergipark.org.tr/tr/pub/uumfd/issue/21677/233298 adresinden alındı Xie, T., Xu, L., Liu, C., ve Wang, Y. (2013). Magnetic composite ZnFe2O4 /SrFe12O19: Preparation, characterization, and photocatalytic activity under visible light. Applied Surface Science, 273, 684–691. doi:10.1016/j.apsusc.2013.02.113 Yılmaz, S. N. (2017). Radyolojik Olay ve Kazalara Müdahalede Kullanılacak Değişik Radyasyon Türlerine Karşı Koruma Sağlayan Silikon Tabanlı Malzemenin Geliştirilmesi (Yüksek Lisans Tezi). Mersin: Mersin Üniversitesi Fen Bilimleri Enstitüsü. https://acikbilim.yok.gov.tr/handle/20.500.12812/335244 adresinden alındı Yavaşer, R. (2011). Doğal ve Sentetik Antioksidan Bileşiklerin Antioksidan Değerlerinin Karşılaştırılması (Yüksek Lisans Tezi). Aydın: Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü. http://hdl.handle.net/11607/957 adresinden alındı Yüceer, M. (2021). Yumurta Kabuğu Zarı,Çöpten Gelen Katma Değer. İnnoyum, 42-45. https://www.academia.edu/61263064 adresinden alındı

serra ŞENDUR

YENİLEBİLİR KAPLAMA İLE YUMURTANIN RAF ÖMRÜNÜN ARTIRILMASI

Agulló, E., Rodríguez, M. S., Ramos, V., & Albertengo, L. (2003). Present and Future Role of Chitin and Chitosan in Food. Macromolecular Bioscience, 3(10), 521–530. https://doi.org/10.1002/mabi.200300010 Allafchian, A., Jalali, S. A. H., Hosseini, F., & Massoud, M. (2017). Ocimum basilicum mucilage as a new green polymer support for silver in magnetic nanocomposites: Production and characterization. Journal of Environmental Chemical Engineering, 5(6), 5912–5920. https://doi.org/10.1016/j.jece.2017.11.023 Baydar, H., & Telci, İ. (2015). Tıbbi ve Aromatik Bitkilerde Islah, Tohumluk, Tescil ve Sertifikasyon. Türktop Dergisi, 5(15), 12–21. Chiumarelli, M., & Hubinger, M. D. (2014). Evaluation of edible films and coatings formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids, 38, 20–27. https://doi.org/10.1016/j.foodhyd.2013.11.013 De Souza, R. F. B., De Souza, F. C. B., & Moraes, Â. M. (2016). Polysaccharide-based membranes loaded with erythromycin for application as wound dressings. Journal of Applied Polymer Science, 133(22), 1–15. https://doi.org/10.1002/app.43428 Dhall, R. K. (2016). Application of edible films and coatings on fruits and vegetables. Edible Films and Cdoatings: Fundamentals and Applications, December, 363–390. https://doi.org/10.1201/9781315373713 Gadkari, P. V., Tu, S., Chiyarda, K., Reaney, M. J. T., & Ghosh, S. (2018). Rheological characterization of fenugreek gum and comparison with other galactomannans. International Journal of Biological Macromolecules, 119, 486–495. https://doi.org/10.1016/j.ijbiomac.2018.07.108 Hashemi, S. M. B., Mousavi Khaneghah, A., Ghaderi Ghahfarrokhi, M., & Eş, I. (2017). Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biology and Technology, 125, 26–34. https://doi.org/10.1016/j.postharvbio.2016.11.003 Hosseini-Parvar, S. H., Matia-Merino, L., Goh, K. K. T., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of Food Engineering, 101(3), 236–243. https://doi.org/10.1016/j.jfoodeng.2010.06.025 Hussain, Z., Katas, H., Mohd Amin, M. C. I., Kumolosasi, E., Buang, F., & Sahudin, S. (2013). Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: An ex vivo and in vivo study using an NC/Nga mouse model. International Journal of Pharmaceutics, 444(1–2), 109–119. https://doi.org/10.1016/j.ijpharm.2013.01.024 Keisandokht, S., Haddad, N., Gariepy, Y., & Orsat, V. (2018). Screening the microwave-assisted extraction of hydrocolloids from Ocimum basilicum L. seeds as a novel extraction technique compared with conventional heating-stirring extraction. Food Hydrocolloids, 74, 11–22. https://doi.org/10.1016/j.foodhyd.2017.07.016 Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102(1), 199–206. https://doi.org/10.1016/j.carbpol.2013.10.062 Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012 No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: A review. Journal of Food Science, 72(5). https://doi.org/10.1111/j.1750-3841.2007.00383.x Pavlath, A. E., & Orts, W. (2009). Edible Films and Coatings: Why, What, and How? Edible Films and Coatings for Food Applications, 1–23. https://doi.org/10.1007/978-0-387-92824-1_1 Pires, P. G. S., Leuven, A. F. R., Franceschi, C. H., Machado, G. S., Pires, P. D. S., Moraes, P. O., Kindlein, L., & Andretta, I. (2020). Effects of rice protein coating enriched with essential oils on internal quality and shelf life of eggs during room temperature storage. Poultry Science, 99(1), 604–611. https://doi.org/10.3382/ps/pez546 Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457–1465. https://doi.org/10.1021/bm034130m Rafe, A., Razavi, S. M. A., & Khan, S. (2012). Rheological and structural properties of β-lactoglobulin and basil seed gum mixture: Effect of heating rate. Food Research International, 49(1), 32–38. https://doi.org/10.1016/j.foodres.2012.07.017 Rayegan, A., Allafchian, A., Abdolhosseini Sarsari, I., & Kameli, P. (2018). Synthesis and characterization of basil seed mucilage coated Fe3O4 magnetic nanoparticles as a drug carrier for the controlled delivery of cephalexin. International Journal of Biological Macromolecules, 113(2017), 317–328. https://doi.org/10.1016/j.ijbiomac.2018.02.134 ResmiGazete. (2017). Resmi Gazete Tarihi: 20.12.2014 Resmi Gazete Sayısı: 29211. Resmi Gazete. Suput, D., Lazic, V., Popovic, S., & Hromis, N. (2015). Edible films and coatings: Sources, properties and application. Food and Feed Research, 42(1), 11–22. https://doi.org/10.5937/ffr1501011s Tirma, A. R. A. Ş., & Genç, F. (2013). Sülünlerin ( Phasianus colchicus ) Yumurta Kalite Özelliklerine Yeti ş tirme Sistemlerinin ve Ya ş ı n Etkisi *. 27(2), 67–73. Torlak, E., & Nizamoğlu, M. (2009). Doğal Antimikrobiyal Maddeler ile Hazırlanan Yenilebilir Filmlerin Listeria Monocytogenes Üzerine Etkileri. Veteriner Bilim Dergisi, 25(1–2), 15–21. Turasan, H., Sahin, S., & Sumnu, G. (2015). Encapsulation of rosemary essential oil. LWT – Food Science and Technology, 64(1), 112–119. https://doi.org/10.1016/j.lwt.2015.05.036 Valencia-Chamorro, S. A., Palou, L., Delŕio, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900. https://doi.org/10.1080/10408398.2010.485705 Yang, L., & Paulson, A. T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33(7), 571–578. https://doi.org/10.1016/S0963-9969(00)00093-4 Yousuf, B., Qadri, O. S., & Srivastava, A. K. (2018). Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT – Food Science and Technology, 89, 198–209. https://doi.org/10.1016/j.lwt.2017.10.051 Yüceer, M., & Caner, C. (2013). Lisozim-Kitosan Bazlı Antimikrobiyal Kaplama Uygulamasının Taze Yumurtanın Mikrobiyolojik Kalitesi Üzerine Etkisi. 11(1), 40–45.

İrem Eski

ŞİFRELEMEYİ ÖĞRENİYORUM

(1) Agbo, F. J., Oyelere, S. S., Suhonen, J., & Laine, T. H. (2021). Co-design of mini-games for learning computational thinking in an online environment. Education and Information Technologies, 26(5), 5815–5849. (2) Akleylek, S. ,Akyıldız, E., Çimen, C. (2007). Şifrelerin Matematiği: Kriptoğrafi, ODTÜ Geliştirme Vakfı Yayıncılık, İstanbul. (3) Bers, M., Flannery, L., Kazakoff, E., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145-157. (4) Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers and Education, 109, 162-175. (5) “Kayes Sayı Dizilişi ile Klasik Şifreleme” TÜBİTAK 2204-B Ortaokul Öğrencileri Araştırma Projeleri Yarışması Raporu (6) Muilenburg, L. S. M. S. Y., & Berge, Z. L. (2015). Revisiting teacher preparation. Quarterly Review of Distance Education Journal Issue, 16(2), 93-105. (7) Nabiyev, V. (2007). Teoriden Uygulamalara Algoritmalar, Seçkin Yayıncılık, Ankara. (8) Nebel, S., Schneider, S., & Rey, G. (2016). Mining Learning and Crafting Scientific Experiments: A Literature Review on the Use of Minecraft in Education and Research. Educational Technology & Society, 19(2), 355–366. (9) Şahin, M. Kriptolojiye Giriş, https://acikders.ankara.edu.tr/course/view.php?id=26. (Erişim Tarihi: 10.09.2020 (10) Yadav, A. K., & Oyelere, S. S. (2021). Contextualized mobile game-based learning application for computing education. Education and Information Technologies, 26(3), 2539–2562. (11) Yerlikaya, T., Buluş, E., & Buluş, N. (2006). Asimetrik Şifreleme Algoritmalarında Anahtar Değişim Sistemleri. Akademik Bilişim, 9-11.

Beyza Nur YASTIKÇI

KAŞAR PEYNİRLERİNDEKİ STAPHYLOCOCCUS AUREUS ÜZERİNE SOĞUK PLAZMA YÖNTEMİNİN İNAKTİVASYON ETKİSİ

Anonymous. (2021). Plasma-the fourth state of matter. Erişim adresi: https://www.iasgyan.in/daily-current-affairs/plasma-the-fourth-state-of-matter (Erişim tarihi: 17 Ocak 2023). Ansari, M., Sharifian, M., Ehrampoush, M. H., Mahvi, A. H., Salmani, M. H., and Fallahzadeh, H. (2021). Dielectric barrier discharge plasma with photocatalysts as a hybrid emerging technology for degradation of synthetic organic compounds in aqueous environments: A critical review. Chemosphere, 263. Barba, F.J., Koubaa, M., do Prado-Silva, L., Orlien, V., de Souza Sant’Ana, A., 2017. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science and Technology, 66, 20–35. Bermúdez-Aguirre, D., Wemlinger, E., Pedrow, P., Barbosa-Cánovas, G., and Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control, 34(1), 149–157. Bilgehan, H. (2000). Klinik Mikrobiyoloji Özel Bakteriyoloji ve Bakteri Enfeksiyonları. Barış Yayınları, 10. Basım, İzmir, 240-266. Bintsis, T., 2017. Foodborne pathogens. AIMS Microbiology, 3(3), 529. Bogaerts, A., Neyts, E., Gijbels, R., and van der Mullen, J. (2002). Gas discharge plasmas and their applications. In Spectrochimica Acta Part B, 57, 609–658. CDC (Centers for Disease Control and Prevention US), 2022. Erişim adresi: https://www.cdc.gov/foodsafety/outbreaks/index.html (Erişim tarihi: 16 Ocak 2023). Çelik, E. Ö. (2020). Canlı Dokuya Doğrudan Uygulanabilir Medikal Plazma Cihazı Üretimi Ve Bakteriler Üzerine Etkisinin Araştırılması: İlk Yerli Prototip Tasarım. Başkent Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara. Feizollahi, E., Misra, N. N., and Roopesh, M. S. (2021). Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition, 61(4), 666-689. Fernández, A., and Thompson, A. (2012). The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International, 45(2), 678–684. Ishaq, M., Evans, M., and Ostrikov, K. (2014). Effect of atmospheric gas plasmas on cancer cell signaling. In International Journal of Cancer (Vol. 134, Issue 7, pp. 1517–1528). Kamble, D.B., Rani, S., Bashir, K., Swer, T.L., 2021. Plasma Decontamination of Animal-Related Food Products. In: Knoerzer, K., Muthukumarappan, K. (Eds.), Innovative Food Processing Technologies. Elsevier, Amsterdam, ISBN 9780128157824, p. 598–609. Lee, H. W., Nam, S. H., Mohamed, A. A. H., Kim, G. C., and Lee, J. K. (2010). Atmospheric pressure plasma jet composed of three electrodes: Application to tooth bleaching. In Plasma Processes and Polymers (Vol. 7, Issues 3–4). Misra, N. N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., and Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125(1), 131–138. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. and Yahia, L. H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1), 1-21. Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3(1), 125–142. Noriega, E., Shama, G., Laca, A., Díaz, M., Kong, M.G., 2011. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28 (7), 1293–1300. Otto, M. (2014). Staphylococcus aureus toxins. Current opinion in microbiology, 17, 32-37. Patange, A., Boehm, D., Ziuzina, D., Cullen, P.J., Gilmore, B., Bourke, P., 2019. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. International Journal of Food Microbiology, 293, 137–145. Rød, S. K., Hansen, F., Leipold, F., and Knøchel, S. (2012). Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1), 233–238. Sarangapani, C., Patange, A., Bourke, P., Keener, K., Cullen, P.J., 2018. Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology, 9, 609-629. Tong, D. G., Wu, P., Su, P. K., Wang, D. Q., and Tian, H. Y. (2012). Preparation of zinc oxide nanospheres by solution plasma process and their optical property, photocatalytic and antibacterial activities. Materials Letters, 70, 94–97. Troeman, D. P. R., Van Hout, D., and Kluytmans, J. A. J. W. (2019). Antimicrobial approaches in the prevention of Staphylococcus aureus infections: a review. Journal of Antimicrobial Chemotherapy, 74(2), 281-294. Xu, N., Cui, X., Fang, Z., Shi, Y., and Zhou, R. (2018). A Two-Mode Portable Atmospheric Pressure Air Plasma Jet Device for Biomedical Applications. IEEE Transactions on Plasma Science, 46(4), 947–953. Yangıç-Yüksel, Ç., and Karagözlü, N. (2017). Soğuk Atmosferik Plazma Teknolojisi ve Gıdalarda Kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 81–86

Büşra Likoğlu

ÇEVRE KİRLİLİĞİNİ ÖNLEMEK İÇİN “EKOLOJİK AMBALAJ”

Berberoğlu, M. (2018). Aljinat Filmlerinde Dış Çapraz Bağlama Ve Gliserin Katkısının Yapı Ve Fiziksel Özelliklere Etkileri [Yüksek Lisana]. İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. Cao, X.-L. (2010). Phthalate Esters in Foods: Sources, Occurrence, and Analytical Methods. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 9, 23–25. Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44(4), 223–237. https://doi.org/10.1080/10408690490464276 Güzel, M., & Akpınar, Ö. (2017). Turunçgil Kabuklarından Elde Edilen Pektinlerin Karakterizasyonu ve Karşılaştırılması. Akademik Gıda, 17–17. https://doi.org/10.24323/akademik-gida.304274 He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC – Trends in Analytical Chemistry, 109, 163–172. https://doi.org/10.1016/j.trac.2018.10.006 Kanimozhi, K., Khaleel Basha, S., Sugantha Kumari, V., Kaviyarasu, K., & Maaza, M. (2018). In vitro cytocompatibility of chitosan/PVA/methylcellulose – Nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Applied Surface Science, 449, 574–583. https://doi.org/10.1016/j.apsusc.2017.11.197 Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. In Progress in Polymer Science (Oxford) (Vol. 37, Issue 1, pp. 106–126). Elsevier Ltd. https://doi.org/10.1016/j.progpolymsci.2011.06.003 McHugh, D. J. (2003). A guide to the seaweed industry. FAO Fisheries Technical Paper. Meng, Q., Heuzey, M. C., & Carreau, P. J. (2014). Hierarchical structure and physicochemical properties of plasticized chitosan. Biomacromolecules, 15(4), 1216–1224. https://doi.org/10.1021/bm401792u Myllärinen, P., Partanen, R., Seppälä, J., & Forssell, P. (2002). Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydrate Polymers, 50(4), 355–361. https://doi.org/10.1016/S0144-8617(02)00042-5 Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 33(11), 3279–3305. https://doi.org/10.1016/J.BIOMATERIALS.2012.01.007 Şahin, O. I., & Akpınar Bayizit, A. (2008). Gıda Kongresi; 21-23 Mayıs. Nanokompozit Filmlerin Gıda Sanayi Uygulamaları , 145–148. http://depts.washington.edu/poeweb/gradprograms/ Sarıoğlu, T., & Öner, Z. (2006). Yenilebilir Filmlerin Kaşar Peynirinin Kaplanmasında Kullanılma Olanakları ve Peynir Kalitesi Üzerine Etkileri. Gıda, 31(1), 3–10. T.C.MİLLÎ EĞİTİM BAKANLIĞI. (2016). Gıda Teknolojisi-Su (Vol. 1). Temiz, H., & Faruk Yesilsu, A. (2006). Bitkisel Protein Kaynaklı Yenilebilir Film Ve Kaplamalar. Www.Teknolojikarastirmalar.Org , 2, 41–50. https://www.researchgate.net/publication/313368957 Xin, Y., Bligh, M. W., Kinsela, A. S., Wang, Y., & David Waite, T. (2015). Calcium-mediated polysaccharide gel formation and breakage: Impact on membrane foulant hydraulic properties. Journal of Membrane Science, 475, 395–405. https://doi.org/10.1016/j.memsci.2014.10.033

Alp Dinçkoç

The Role of the Inhibitors of Transmembrane Protein TMPRRS2 in the Potential Treatment of Covid-19

Aiyegbusi OL, Hughes SE, Turner G, Rivera SC, McMullan C, Chandan JS, Haroon S, Price G, Davies EH, Nirantharakumar K, et al. 2021. Symptoms, complications and management of long COVID: a review. Journal of the Royal Society of Medicine. 114(9):014107682110328. doi:https://doi.org/10.1177/01410768211032850. Aleem A, Kothadia JP. 2021. Remdesivir. PubMed. https://www.ncbi.nlm.nih.gov/books/NBK563261/. Aoyama T, Ino Y, Ozeki M, Oda M, Sato T, Koshiyama Y, Suzuki S, Fujita M. 1984. Pharmacological Studies of FUT-175, Nafamstat Mesilate I. Inhibition of Protease Activity in in Vitro and in Vivo Experiments. 35(3):203–227. doi:https://doi.org/10.1254/jjp.35.203. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. 2020. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 9(3):186. doi:https://doi.org/10.3390/pathogens9030186. https://www.mdpi.com/2076-0817/9/3/186. Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, Cases‐Thomas M, Little P, Nielsen LP, Søgaard OS, et al. 2020. Camostat mesylate against SARS‐CoV‐2 and COVID‐19—Rationale, dosing and safety. Basic & Clinical Pharmacology & Toxicology. 128(2):204–212. doi:https://doi.org/10.1111/bcpt.13533. Cao J-F, Yang X, Xiong L, Wu M, Chen S-Y, Xiong C, He P, Zong Y, Zhang L, Fu H, et al. 2022. Mechanism of N-0385 blocking SARS-CoV-2 to treat COVID-19 based on molecular docking and molecular dynamics. 13. doi:https://doi.org/10.3389/fmicb.2022.1013911. Coote K, Atherton-Watson HC, Sugar R, Young AM, MacKenzie-Beevor A, Gosling M, Gurdip Bhalay, Graham Charles Bloomfield, Dunstan A, Bridges RS, et al. 2009. Camostat Attenuates Airway Epithelial Sodium Channel Function in Vivo through the Inhibition of a Channel-Activating Protease. Journal of Pharmacology and Experimental Therapeutics. 329(2):764–774. doi:https://doi.org/10.1124/jpet.108.148155. Fraser BJ, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y, Kwon D, Tan R, Wilson RP, Leopold K, et al. 2022. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nature Chemical Biology. 18(9):963–971. doi:https://doi.org/10.1038/s41589-022-01059-7. https://www.nature.com/articles/s41589-022-01059-7. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, et al. 2011. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. Journal of Virology. 85(9):4122–4134. doi:https://doi.org/10.1128/JVI.02232-10. https://jvi.asm.org/content/85/9/4122.short. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. 2013. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology. 88(2):1293–1307. doi:https://doi.org/10.1128/jvi.02202-13. Hirano T, Takeuchi S. 1993. A New Protease Inhibitor, Nafamostat Mesilate (FUT-175), Protects Pancreatic Acinar Cells in CDE-Diet-lnduced Pancreatitis in Mice. Digestive Surgery. 10(4):182–188. doi:https://doi.org/10.1159/000172171. Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Arora P, Sørensen LK, Søgaard OS, Hasselstrøm JB, Winkler M, Hempel T, et al. 2021. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 65. doi:https://doi.org/10.1016/j.ebiom.2021.103255. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(21)00048-7/fulltext. Huang Y, Yang C, Xu X, Xu W, Liu S. 2020. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 41(9):1141–1149. doi:https://doi.org/10.1038/s41401-020-0485-4. https://www.nature.com/articles/s41401-020-0485-4. Jackson CB, Farzan M, Chen B, Choe H. 2021. Mechanisms of SARS-CoV-2 Entry into Cells. Nature Reviews Molecular Cell Biology. 23(1):1–18. doi:https://doi.org/10.1038/s41580-021-00418-x. Knight AC, Montgomery SA, Fletcher CA, Baxter VK. 2021. Mouse Models for the Study of SARS-CoV-2 Infection. Comparative Medicine. 71(5):1–15. doi:https://doi.org/10.30802/AALAS-CM-21-000031. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594264/. Leach DA, Mohr A, Giotis ES, Cil E, Isac AM, Yates LL, Barclay WS, Zwacka RM, Bevan CL, Brooke GN. 2021. The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nature Communications. 12:4068. doi:https://doi.org/10.1038/s41467-021-24342-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249423/. Li F, Han M, Dai P, Xu W, He J, Tao X, Wu Y, Tong X, Xia X, Guo W, et al. 2021. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications. 12(1). doi:https://doi.org/10.1038/s41467-021-21171-x. https://www.nature.com/articles/s41467-021-21171-x.pdf. Li K, Meyerholz DK, Bartlett JA, McCray PB. 2021. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio. 12(4):e0097021. doi:https://doi.org/10.1128/mBio.00970-21. https://pubmed.ncbi.nlm.nih.gov/34340553/). K Beckh, Burkhard Göke, R. Müller, Arnold R. 1987. Elimination of the low-molecular weight proteinase inhibitor camostate (FOY 305) and its degradation products by the rat liver. Research in Experimental Medicine. 187(6):401–406. doi:https://doi.org/10.1007/bf01852177. Keller C, Böttcher-Friebertshäuser E, Lohoff M. 2022. TMPRSS2, a novel host-directed drug target against SARS-CoV-2. Signal Transduction and Targeted Therapy. 7(1). doi:https://doi.org/10.1038/s41392-022-01084-x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308027/. Ko W-C, Rolain J-M, Lee N-Y, Chen P-L, Huang C-T, Lee P-I, Hsueh P-R. 2020. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. International Journal of Antimicrobial Agents. 55(4):105933. doi:https://doi.org/10.1016/j.ijantimicag.2020.105933. https://www.sciencedirect.com/science/article/pii/S0924857920300832?viaihub. Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F, Schmitzova J, Farnung L, Siewert A, Höbartner C, Cramer P. 2021. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nature Communications. 12(1). doi:https://doi.org/10.1038/s41467-020-20542-0. Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. 2022. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. Wani TA, editor. BioMed Research International. 2022:1–16. doi:https://doi.org/10.1155/2022/7341493. Marzolini C, Kuritzkes DR, Marra F, Boyle A, Gibbons S, Flexner C, Pozniak A, Boffito M, Waters L, Burger D, et al. 2022 May 14. Recommendations for the management of drug‐drug interactions between the COVID‐19 antiviral nirmatrelvir/ritonavir (Paxlovid ® ) and comedications. Clinical Pharmacology & Therapeutics. doi:https://doi.org/10.1002/cpt.2646. Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. 2022. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virology Journal. 19(1). doi:https://doi.org/10.1186/s12985-022-01802-5. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, et al. 2006. Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology. 81(2):813–821. doi:https://doi.org/10.1128/jvi.02012-06. Moon AM, Barritt AS. 2020 Sep 2. Elevated Liver Enzymes in Patients with COVID-19: Look, but Not Too Hard. Digestive Diseases and Sciences. doi:https://doi.org/10.1007/s10620-020-06585-9. Moreau GB, Burgess SL, Sturek JM, Donlan AN, Petri WA, Mann BJ. 2020. Evaluation of K18-hACE2 Mice as a Model of SARS-CoV-2 Infection. The American Journal of Tropical Medicine and Hygiene. 103(3):1215–1219. doi:https://doi.org/10.4269/ajtmh.20-0762. Peng R, Wu L-A, Wang Q, Qi J, Gao GF. 2021. Cell entry by SARS-CoV-2. Trends in Biochemical Sciences. 46(10):848–860. doi:https://doi.org/10.1016/j.tibs.2021.06.001. Ragia G, Manolopoulos VG. 2020 Jul 21. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. European Journal of Clinical Pharmacology. doi:https://doi.org/10.1007/s00228-020-02963-4. Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. 2021. SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Frontiers in Immunology. 12. doi:https://doi.org/10.3389/fimmu.2021.708264. Sarker J, Das P, Sarker S, Roy AK, Momen AZMR. 2021. A Review on Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike Protein Activation. Seong SY, editor. Scientifica. 2021:1–9. doi:https://doi.org/10.1155/2021/2706789. Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, et al. 2022 Mar 28. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature.:1–13. doi:https://doi.org/10.1038/s41586-022-04661-w. https://www.nature.com/articles/s41586-022-04661-w. Slovin S, Clark W, Carles J, Krivoshik A, Park JW, Wang F, George D. 2018. Seizure Rates in Enzalutamide-Treated Men With Metastatic Castration-Resistant Prostate Cancer and Risk of Seizure: The UPWARD Study. JAMA oncology. 4(5):702–706. doi:https://doi.org/10.1001/jamaoncol.2017.3361. https://pubmed.ncbi.nlm.nih.gov/29222530/. Sonawane KD, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble SA, Mohammed AA, Makandar AM, Fandilolu PM, Dound AS, et al. 2021. Structural insights and inhibition mechanism of TMPRSS2 by experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-coronavirus-2: A molecular modeling approach. Informatics in Medicine Unlocked. 24:100597. doi:https://doi.org/10.1016/j.imu.2021.100597. Stevaert A, Van Berwaer R, Mestdagh C, Vandeput J, Vanstreels E, Raeymaekers V, Laporte M, Naesens L. 2022. Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease. mBio. 13(4):e0137622. doi:https://doi.org/10.1128/mbio.01376-22. https://pubmed.ncbi.nlm.nih.gov/35913162/. Su SB, Motoo Y, Iovanna JL, Xie MJ, Sawabu N. 2001. Effect of camostat mesilate on the expression of pancreatitis-associated protein (PAP), p8, and cytokines in rat spontaneous chronic pancreatitis. Pancreas. 23(2):134–140. doi:https://doi.org/10.1097/00006676-200108000-00003. https://pubmed.ncbi.nlm.nih.gov/11484915/. TMPRSS2 transmembrane serine protease 2 [Homo sapiens (human)] – Gene – NCBI. wwwncbinlmnihgov. https://www.ncbi.nlm.nih.gov/gene/7113. Wettstein L, Kirchhoff F, Münch J. 2022. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. International Journal of Molecular Sciences. 23(3):1351. doi:https://doi.org/10.3390/ijms23031351. Wu N, Joyal-Desmarais K, Ribeiro PAB, Vieira AM, Stojanovic J, Sanuade C, Yip D, Bacon SL. 2023. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. The Lancet Respiratory Medicine. 0(0). doi:https://doi.org/10.1016/S2213-2600(23)00015-2. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(23)00015-2/fulltext#:~:text=Vaccineeffectivenessatbaselinewas. Yamaya M, Shimotai Y. 2016. Serine Proteases and their Inhibitors in Human Airway Epithelial Cells: Effects on Influenza Virus Replication and Airway Serine Proteases and their Inhibitors in Human Airway Epithelial Cells: Effects on Influenza Virus Replication and Airway Inflammation. Clinical Microbiology. 05(02). doi:https://doi.org/10.4172/2327-5073.1000238. Yinda CK, Port JR, Bushmaker T, Offei Owusu I, Purushotham JN, Avanzato VA, Fischer RJ, Schulz JE, Holbrook MG, Hebner MJ, et al. 2021. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. Subbarao K, editor. PLOS Pathogens. 17(1):e1009195. doi:https://doi.org/10.1371/journal.ppat.1009195. Yuan L, Li M, Zhang Z, Li W, Jin W, Wang M. 2021. Camostat mesilate inhibits pro-inflammatory cytokine secretion and improves cell viability by regulating MFGE8 and HMGN1 in lipopolysaccharide-stimulated DF-1 chicken embryo fibroblasts. PeerJ. 9:e12053. doi:https://doi.org/10.7717/peerj.12053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403478/. Zheng J, Wong L-YR, Li K, Verma AK, Ortiz M, Wohlford-Lenane C, Leidinger MR, Knudson CM, Meyerholz DK, McCray PB, et al. 2020 Nov 9. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature.:1–8. doi:https://doi.org/10.1038/s41586-020-2943-z. https://www.nature.com/articles/s41586-020-2943-z. Hu, Xin, et al. “Discovery of TMPRSS2 Inhibitors from Virtual Screening.” BioRxiv, 17 Mar. 2021, p. 2020.12.28.424413, www.ncbi.nlm.nih.gov/pmc/articles/PMC7781311/, https://doi.org/10.1101/2020.12.28.424413. Mantzourani, Christiana, et al. “The Discovery and Development of Transmembrane Serine Protease 2 (TMPRSS2) Inhibitors as Candidate Drugs for the Treatment of COVID-19.” Expert Opinion on Drug Discovery, vol. 17, no. 3, 24 Jan. 2022, pp. 231–246, https://doi.org/10.1080/17460441.2022.2029843. Accessed 11 Mar. 2022. Maggio, Roberto, and Giovanni U. Corsini. “Repurposing the Mucolytic Cough Suppressant and TMPRSS2 Protease Inhibitor Bromhexine for the Prevention and Management of SARS-CoV-2 Infection.” Pharmacological Research, vol. 157, July 2020, p. 104837, https://doi.org/10.1016/j.phrs.2020.104837. Accessed 14 May 2020. Mikhaylov, Evgeny N, et al. “Bromhexine Hydrochloride Prophylaxis of COVID-19 for Medical Personnel: A Randomized Open-Label Study.” Interdisciplinary Perspectives on Infectious Diseases, vol. 2022, 29 Jan. 2022, pp. 1–7, www.ncbi.nlm.nih.gov/pmc/articles/PMC8799951/, https://doi.org/10.1155/2022/4693121. Accessed 6 Dec. 2023. Sun, Young Joo, et al. “Structure-Based Phylogeny Identifies Avoralstat as a TMPRSS2 Inhibitor That Prevents SARS-CoV-2 Infection in Mice.” Journal of Clinical Investigation, vol. 131, no. 10, 17 May 2021, https://doi.org/10.1172/jci147973. Accessed 21 June 2021. Bojkova, Denisa, et al. “Aprotinin Inhibits SARS-CoV-2 Replication.” Cells, vol. 9, no. 11, 30 Oct. 2020, p. 2377, https://doi.org/10.3390/cells9112377. Accessed 6 Dec. 2021. Ramakrishnan, Jaganathan, et al. “Strong Binding of Leupeptin with TMPRSS2 Protease May Be an Alternative to Camostat and Nafamostat for SARS-CoV-2 Repurposed Drug: Evaluation from Molecular Docking and Molecular Dynamics Simulations.” Applied Biochemistry and Biotechnology, vol. 193, no. 6, 29 Jan. 2021, pp. 1909–1923, https://doi.org/10.1007/s12010-020-03475-8. Accessed 4 Feb. 2022. Shirogane, Yuta, et al. “Efficient Multiplication of Human Metapneumovirus in Vero Cells Expressing the Transmembrane Serine Protease TMPRSS2.” Journal of Virology, vol. 82, no. 17, Sept. 2008, pp. 8942–8946, https://doi.org/10.1128/jvi.00676-08. Accessed 2 Dec. 2021. Sasaki, Michihito, et al. “Host Serine Proteases TMPRSS2 and TMPRSS11D Mediate Proteolytic Activation and Trypsin-Independent Infection in Group a Rotaviruses.” Journal of Virology, vol. 95, no. 11, 10 May 2021, pp. e00398-21, JVI.00398-21, pubmed.ncbi.nlm.nih.gov/33762412/, https://doi.org/10.1128/JVI.00398-21. Accessed 6 Dec. 2023. Bertram, S., et al. “TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium.” Journal of Virology, vol. 87, no. 11, 27 Mar. 2013, pp. 6150–6160, https://doi.org/10.1128/jvi.03372-12. Accessed 9 June 2020. Abe, Masako, et al. “TMPRSS2 Is an Activating Protease for Respiratory Parainfluenza Viruses.” Journal of Virology, vol. 87, no. 21, 1 Nov. 2013, pp. 11930–11935, www.ncbi.nlm.nih.gov/pmc/articles/PMC3807344/, https://doi.org/10.1128/jvi.01490-13. Accessed 6 Dec. 2023. Limburg, Hannah, et al. “TMPRSS2 Is the Major Activating Protease of Influenza a Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes.” Journal of Virology, vol. 93, no. 21, Nov. 2019, https://doi.org/10.1128/jvi.00649-19.

en_USEN